| \(\int x^{n} \ dx\) |
\( \frac{x^{n+1}}{n+1}, n \neq -1 \) |
| \(\int \frac{1}{x} \ dx \) |
\( \ln|x| + C \) |
| \(\int e^{x} \ dx\) |
\( e^{x} + C \) |
| \(\int e^{kx} \ dx\) |
\( \frac{1}{k} e^{kx} + C \) |
| \(\int a^{x} \ dx\) |
\( \frac{a^{x}}{\ln a} + C \) |
| \(\int \sin(x) \ dx\) |
\( -\cos(x) + C \) |
| \(\int \cos(x) \ dx\) |
\( \sin(x) + C \) |
| \(\int \tan(x) \ dx\) |
\( -\ln \cdot |\cos(x)| + C \) |
| \(\int \sec^{2}(x) \ dx\) |
\( \tan(x) + C \) |
| \(\int csc^2(x) \ dx\) |
\( -\cot(x) + C \) |
| \(\int \sec(x) \cdot \tan(x) \ dx\) |
\( \sec(x) + C \) |
| \(\int \csc(x) \cdot \cot(x) \ dx\) |
\( -\csc(x) + C \) |